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We study the relaxations, surface energies, and work functions of low-index metallic surfaces using pseudo-
potential plane-wave density-functional calculations within the generalized gradient approximation. We study
here the �100�, �110�, and �111� surfaces of Al, Pd, Pt, and Au and the �0001� surface of Ti, chosen for their use
as contact or lead materials in nanoscale devices. We consider clean, mostly nonreconstructed surfaces in the
slab-supercell approximation. Particular attention is paid to the convergence of these quantities with respect to
slab thickness; furthermore, different methodologies for the calculation of work functions and surfaces energies
are compared. We find that the use of bulk references for calculations of surface energies and work functions
can be detrimental to convergence unless numerical grids are closely matched, especially when surface relax-
ations are being considered. Our results and comparison show that calculated values often do not quantitatively
match experimental values. This may be understandable for the surface relaxations and surface energies, where
experimental values can have large error but even for the work functions, neither local nor semilocal function-
als emerge as an accurate choice for every case.
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I. INTRODUCTION

Electronic-structure calculations are becoming more
widely applied to increasingly complex and realistic materi-
als systems and devices, reaching well into the domain of
nanotechnology with applications ranging from metal-
molecule junctions, carbon-nanotube field effect transistors,
and nanostructured metals or semiconductors.1,2 For such
complex applications, characterizing the properties of the el-
ementary building blocks becomes of fundamental impor-
tance. Consider nanoscale constructions such as self-
assembled monolayers, where the underlying metal work
function �and Fermi energy� are crucial to determining inter-
facial phenomena.3 Thus, it becomes critical to have a clear
understanding of the fundamental properties of the metal
lead surfaces—starting from surface energies, structural re-
laxations, and work functions.

It is also important to highlight the limitations of density-
functional theory �DFT� when considering even only the
building blocks, in this case with regard to surface properties
of metals. In general local and semilocal approximations for
the exchange-correlation functional perform well for metals,
however this is not the case for metal surfaces.4 For this
purpose we proceed here with a detailed study of the prop-
erties of clean metal surfaces of interest, as lead materials, to
nanotechnological applications and discuss the issues in-
volved in obtaining converged estimates using electronic-
structure modeling—in this case using DFT and the slab-
supercell approximation—and the accuracy of these
estimates compared to experimental values.

First, surface relaxations can arise from the creation of a
new surface—i.e., cleaving of a bulk in two. This leads to a
smoothing of the charge density at the new surface which
causes a net force on the outermost surface layer of ions
pointing into the bulk.5 DFT calculations in the slab-
supercell approximation, assuming a pristine unit cell of the

unreconstructed surface, can be effectively used to study
these surface-layer relaxations.

Second, the surface energy is the energy required to
cleave an infinite crystal in two—i.e., the amount of energy
required to create a new surface. This is a difficult quantity to
determine experimentally because it usually requires measur-
ing surface tension at the melting temperature of the metal.6

Theoretical determination of this quantity is relatively easy
and particularly useful in studies of the relative stability of
different surface facets.7 However surface energy calcula-
tions within DFT are sensitive to numerical errors arising
from differences in Brillouin-zone sampling.8 Methodologies
for avoiding these errors have been proposed in the
literature8–10 and are discussed in later sections of this study.

Third, the work function is the minimum energy needed
to remove an electron from the bulk of a material through a
surface to a point outside the material. In practice, this is the
energy required at 0 K to remove an electron from the Fermi
level of the metal to the vacuum potential.11 Calculations of
work function using DFT employ this definition and deter-
mine the Fermi energy and vacuum potential from calcula-
tions of the metals in slab-supercell geometries. However,
work functions calculated with slab approximations are
known to have a dependency on the thickness of the slab,
thus further analysis is required to extract bulk metal work
functions from slab approximation. This dependency is well
documented in some cases and is attributed to finite-size ef-
fects arising from classical electrostatic interactions or from
quantum size effects.12–14 Methodology to lessen such effects
is available in the literature.15

In this paper we calculate the relaxations, surface ener-
gies, and work functions of the �111�, �100�, and �110� sur-
faces of Al, Pd, Pt, and Au and the �0001� surface of Ti
within DFT. We examine the convergence of all three quan-
tities with respect to the thickness of the slabs, following the
surfaces of Pd as an example. Furthermore, we employ and
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compare a number of different methods of calculation with
respect to surface energy and work function. Well-converged
values of these quantities for all of the metals and surfaces of
this study are tabulated and compared, when available, to
experimental quantities and/or DFT-local-density approxima-
tion �LDA� quantities from the literature. Some of the LDA
generated data from the literature, and compared to here,
were calculated with surface Green’s functions
methodologies.9,16,17 These methods have been shown to be
highly accurate, as well as inherently free from finite-size
effects due to choices of boundary conditions. However, we
feel that the flexibility and popularity of plane-wave DFT
methods for more complex systems highlights the necessity
for comparison of methods and functionals with well-
converged slab-supercell calculated quantities.

II. METHODOLOGY

First-principles calculations within density-functional
theory are carried out using the PWSCF code of the
QUANTUM-ESPRESSO distribution.18 The Perdew-Burke-
Ernzerhof �PBE� functional within the generalized gradient
approximation �GGA� is used.19 For the Brillouin-zone inte-
gration, we use a Monkhorst-Pack set of special k points20

and Marzari-Vanderbilt smearing21 with a broadening of 0.02
Ryd.

Ultrasoft pseudopotentials �USPPs� are used for Pd, Pt,
and Au. For the case of Pd and Pt the USPPs used have been
generated with the Rappe, Rabe, Kaxiras, and Joannopoulos
�RRKJ3� scheme22 with ten valence electrons each in 4d95s1

and 5d96s1 configurations, respectively. The Au USPPs have
also been generated with the RRKJ3 scheme with 11 valence
electrons in a 5d106s1 configuration.23 For the case of Ti the
USPP was generated using the Vanderbilt scheme24 with 12
valence electrons in a 3s23p64s23d2 configuration. A norm-
conserving pseudopotential is used for Al with electrons in a
3s23p1 configuration. The kinetic-energy cutoff for the plane-
wave basis are 32 Ryd for the wave function and 512 Ryd for
the charge density for Al, Pd, Pt, and Au. For Ti these values
are 40 and 640 Ryd, respectively.

Surfaces were constructed using a supercell with a thin
slab of metal separated from its periodic images by a layer of
vacuum. The size of this region is such that there are always
�16 Å of vacuum between the surfaces. For all the slabs
considered, each layer in the unit cell contains one in-
equivalent atom. For �111� surfaces a hexagonal cell with a
base defined by a0�110� and a0�101� and an interlayer spac-
ing of

a0
�3

and a stacking of ABCABC is used, where a0 is the
equilibrium lattice parameter. The other surfaces are simi-
larly constructed; for �100� a tetragonal cell is used with a

base formed by
a0
�2

�110� and
a0
�2

�11̄0� where the interlayer

spacing is
a0

2 and ABAB stacking. The �110� surface is con-
structed from an orthorhombic cell with a base defined by
a0
�2

�110� and a0�100� with an interlayer spacing of
a0

�2
4 and

ABAB stacking. For the case of Ti the hexagonal cell is used
with a ABAB stacking in the z direction. The remaining
methodological items are discussed in the following results
section.

III. RESULTS

A. Bulk properties

We calculate the lattice parameters and bulk moduli for
Al, Pd, Pt, Au, and Ti. The calculations are performed for the
total energy of the bulk system for a range of lattice param-
eters a. The total-energy data are fit with the Murnaghan
equation of state25 to obtain the bulk moduli. For the case of
bulk Ti, a hexagonal cell is used with a two-atom basis to
construct the hexagonal-close-packed structure. Total-energy
calculations are performed for a range of c /a ratios and each
of them fit with the Murnaghan equation of state. The results
are found in Table I. Here we see that the lattice parameters
of the fcc Al, Pd, Pt, and Au are over estimated ��2%� by
the use of the PBE-GGA exchange-correlation functional.
Similarly, for the bulk moduli the calculated values are un-
derestimated with respect to the experimental values. How-
ever, for the calculations of these properties of Ti, PBE
slightly overestimates the volume of the unit cell as well as
overestimating the bulk modulus. This type of behavior can
be seen in a study of similar metals when calculated using
the PBE functional and a full-potential linear augmented
plane wave �FLAPW� all electron methodology.10 From the
same FLAPW study, we see good agreement with our
pseudopotential calculations for the lattice parameters
�within 0.03 Å� and the bulk moduli �within 5 GPA� of Al,
Pd, and Pt.10 The remainder of this work the equilibrium
lattice parameters calculated with PBE, found in Table I, are
used.

Recently in the literature, it has been shown that Pd cal-
culated within GGA is incorrectly described as having a
magnetic ground state in the bulk.31,32 To this end we also
have calculated the bulk and surface properties of Pd with
spin polarization. We also find that the ground state is de-
scribed as magnetic, however, when applied to the surface
properties, the introduction of magnetism has a small effect.
These calculations are reported and discussed in the Appen-
dix of this paper.

B. Surface relaxations

Surface relaxation is characterized as the percent change
�dij of the spacing between layers i and j versus the equi-

TABLE I. Calculated lattice parameters and bulk moduli of the
metals considered in this study compared with experimental values.

a0 �c /a�
�Å�

a0,expt. �c /a�
�Å�

B
�GPa�

Bexpt.

�GPa�

Al 4.06 4.05a 74 79a

Pd 3.98 3.89a 163 195b

Pt 3.99 3.92a 246 288c

Au 4.16 4.08a 140 180d

Ti 2.95 �1.57� 2.95 �1.59�a 121 110e

aReference 26.
bReference 27.
cReference 28.
dReference 29.
eReference 30.
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librium layer spacing d0. For the �111�, �100�, �110�, and
�0001� surfaces d0 is a0 /�3, a0 /�2, a0

�2 /4, and c0 /2,
respectively.

As an example, the layer relaxations for Pd�100� as a
function of slab thickness can be seen in Fig. 1: convergence
of the relaxed layer spacing is achieved with increasing num-
ber of layers and a slab thickness of 13 layers assures all
relaxations are converged to within 0.1%. We show in Table
II the top three surface-layer relaxations for all surfaces for
13-layer slabs. As expected, the relaxation of the surface lay-
ers is related to the density of packing,5 with larger relax-
ation for the less-densely packed surfaces, with patterns of
multilayer relaxation that become noticeable as we go from
�111� to �100� to �110� surfaces. For the case of Ti�0001�, the
surface is hexagonal close packed, however the large layer
spacing leads to large relaxations. Comparison to low-energy
electron diffraction �LEED� and other experimental values
shows that our well-converged values do not correspond di-
rectly to the experimentally observed values. However, re-
garding first-layer relaxation or expansion, the qualitative
trend is captured in all but the �100� surfaces.

Finally, we note that for this study we are typically con-
cerned with clean nonreconstructed surfaces �larger super-
cells in the in-plane dimension could allow for surface re-
construction�. Some of the more widely know surface
reconstructions are the �22��3� reconstruction of the
Au�111� surface,58 the �2�1� missing-row reconstruction of
the �110� surfaces of Pt and Au,59,60 and a number of recon-
structions of the �100� surfaces of Au and Pt, the most stud-
ied being the �100�-hex.61–63 To this end we investigate for
comparison the Au�110� and Pt�110��2�1� missing-row re-
construction for 13-layer slabs. We find that in both cases the
first-layer relaxation more closely matches that of the experi-
mental values in Table II; −19.7% and −18.6% for Au and
Pt, respectively. However, no improvement is seen in the
second-layer relaxation. Finally, the surfaces of the 4d-metal
Pd as well as the Ti�0001� surface are know to be less likely
to reconstruct at low temperatures. For the case of surface
relaxations, neither the LDA nor GGA exchange-correlation
functionals appear to represent a more accurate choice when
compared to experimental values.

C. Surface energies

The surface energy is the energy required to create a new
surface and as mentioned earlier, it is a difficult quantity to

determine experimentally. In our calculations the surface en-
ergy � can be determined by taking the energy difference
between the total energy of a slab and an equivalent bulk
reference amount, as seen in the following expression:

� = lim
N→�

1

2
�Eslab

N − NEbulk� , �1�

where Eslab
N is the total energy of an N-atom slab, Ebulk is the

total energy of the bulk per atom, and the factor 1
2 accounts

for the two surfaces in the slab unit cell. However, this ex-
pression will diverge with increasing slab thickness if there
are numerical differences between the calculation for the
bulk and the slab �such as differences in the k-point mesh,
etc.�.8 Two methods have been suggested to determine sur-
face energies while avoiding this divergence. Boettger8 uses
the bulk energy in Eq. �1� as Eslab

N −Eslab
N−1, thus avoiding a

calculation on a separate bulk system and effectively elimi-
nating the errors from differences in k-point sampling while
Fiorentini and Methfessel64 make the assumption that in the
limit of large N one can rewrite Eq. �1� as

Eslab
N � 2� + NEbulk. �2�

If the total energy of the slab depends linearly on slab thick-
ness N, the bulk energy term Ebulk can be taken as the slope
and used in Eq. �1�, also avoiding a calculation on a separate
bulk system. In practice, it has been shown that divergence
can be avoided when large and matching k-point samplings
are used for the slab and bulk calculations.10 Here we com-
pare these three methods using the labels “Boettger,”
“Fiorentini,” and “direct,” respectively. Figure 2 shows the
comparison of surface energy versus slab thickness for
Pd�100� surface energies. Here two different calculations are
performed for the direct determination of Ebulk. First, a single
fcc unit cell with a 16�16�16 k-point mesh �dashed circles
in Fig. 2� and second a two-atom tetragonal unit cell with a
16�16�11 k-point mesh to, as closely as possible, match
that of the k-point mesh used for the slab �solid circles in
Fig. 2�.

It can be seen from Fig. 2 that the best nondivergent re-
sults as a function of slab thickness are obtained with the
method of Fiorentini and Methfessel while the method of
Boettger oscillates around these converged values. This pe-
riodicity is likely a manifestation of the finite-size effects
discussed earlier. Furthermore, even though a linear regres-
sion of the total energy versus slab thickness yields an ex-
cellent fit, the localized slopes �Eslab

N −Eslab
N−1� of the Boettger

method lead to energy fluctuations in the bulk reference en-
ergy on the order of 1�10−3 eV. These fluctuations are fur-
ther amplified by the factor N. These same fluctuations can
be seen in all methods when comparing surface energy data
for any given slab thicknesses N and N�1; however, the
choice of bulk reference in the direct and Fiorentini methods
do not further amplify them. Finally, neither the Boettger nor
Fiorentini methods diverge in the same manner that the di-
rect method does when the k-point grids do not match well
for the bulk and surface calculations �dotted circles in Fig.
2�. However, similar to the findings of Da Silva et al.,10 we
find that if the same care is used when choosing the k-point
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Slab thickness (number of layers, N)

-1.6

-1.2

-0.8

-0.4

0.0

0.4
∆d

ij
(%

) ∆d
12

∆d
23

∆d
34

∆d
45

∆d
56

∆d
67

FIG. 1. �Color online� Layer relaxations for the top six layers of
Pd�100� as a function of slab thickness. The numbers reported are
the percent change, �dij, of the spacing between layers i and j
versus the initial layer spacing d0 �for the �100� case d0=a0 /�2�.
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mesh �as is the case for the solid circles in Fig. 2� an accept-
able result is achievable through the direct method. For the
remainder of this paper reported surface energies are calcu-
lated with the method of Fiorentini and Methfessel.

Surface energies are calculated for both relaxed �but un-
reconstructed� and unrelaxed surfaces of all metals consid-
ered in this study. As an example, Fig. 3 shows the surface
energies as a function of slab thickness for all three Pd sur-
faces, both unrelaxed �dashed lines� and relaxed �solid lines�.
From the figure it is clear that surface energies are well con-
verged for slabs as thin as six layers. Also, as expected, the

surfaces that relax the most—i.e., �110�—experience the
largest change in surface energy.

Calculated values for 13-layer slabs for all metals studied
can be found in Table III. All of the values calculated are
converged with an accuracy comparable to those of Fig. 3.
Furthermore, in the table we compare our present PBE cal-
culated values with LDA and experimental values from the
literature. Remarkably, PBE seems to underestimate surface
energies by as much as a factor of 2. If better comparison to
experimental values is desired, LDA represents the better
choice of exchange-correlation functional for all of the �111�

TABLE II. Surface relaxations for the top three layers of all surfaces considered in this study. Reported are the values for a 13-layer slabs,
compared to LDA and experimental values from the literature. For surfaces that are known to reconstruct, experimental values and those
calculated as reconstructed in this study are given in square brackets.

Surface

�d12

�%�
�d23

�%�
�d34

�%�

PBE LDA Expt. PBE LDA Expt. PBE LDA Expt.

Al �111� +1.04a, +1.35b +1.35b +1.7�0.3c −0.54a, +0.54b +0.54b +0.5�0.7c +0.19a, +1.06b +1.04b

+1.4�0.5d

�100� +1.73a +0.5e +2.0�0.8f +0.47a +1.2�0.7f −0.27a

�110� −5.59a −6.9g −8.5�1.0h +2.20a +5.5�1.1h −1.29a +2.2�1.3h

Pd �111� +0.25a, −0.01b −0.22b +1.3�1.3i −0.34a, −0.41b −0.53b −1.3�1.3i +0.10a, −0.22b −0.33b +2.2�1.3i

−0.1j +0.0�4.4k

�100� −1.30a −0.6j +3.0�1.5l −0.00a −1.0�1.5l +0.35a

+0.3�2.6m

�110� −8.49a −5.3j −5.8�2.2n +3.47a +1.0�2.2n −0.19a

−5.1�1.5o +2.9�1.5 o

Pt �111� +0.85a, +1.14b +0.88b +1.1�4.4p −0.56a, −0.29b −0.22b −0.15a, −0.21b −0.17b

+0.5�0.9q

+1.4�0.9r

�100� −2.37a +0.2�2.6s −0.55a +0.29a

�110� −15.03a �−18.5�2.2�t +7.61a �−24.2�4.3�t −1.70a

�−18.62�a �−19.5�7.2�u �+10.59�a �−7.9�5.8�u �−9.57�a

Au �111� −0.04a +0.8v −1.86a −0.3v −1.40a

�100� −1.51a −1.2w �−20�3�x +0.33a +0.4w �+2�3�x +0.24a

�110� −12.94a −9.8y �−20.1�3.5�z +7.83a +7.8y �−6.2�3.5�z −2.66a −0.8y

�−19.7�a �−18.1�6.9�aa �+10.45�a �−6.8�6.9�aa �−11.03�a

�−22.2�6.9�u

Ti �0001� −6.47a, −6.84b −6.44b −4.9ab +4.01a, +2.82b +2.64b +1.4ab −0.68a, −0.51b +0.37b −1.1ab

aPresent study.
bFLAPW-LDA slab �Ref. 10�.
cLEED �Ref. 33�.
dLEED �Ref. 34�.
ePlane-wave pseudopotential �PWPP�-LDA slab �Ref. 35�.
fLEED �Ref. 36�.
gPWPP-LDA slab �Ref. 37�.
hLEED �Ref. 38�.
iLEED �Ref. 39�.
jLDA-surface Green’s function �SGF� �Ref. 9�.
kHEIS �Ref. 40�.
lLEED �Ref. 41�.
mLEED �Ref. 42�.
nLEED �Ref. 43�.

oLEED �Ref. 44�.
pLEED �Ref. 45�.
qSpin polarized low energy electron diffraction �Ref. 46�.
rMedium energy ion spectroscopy �MEIS� �Ref. 47�.
sHigh energy ion scattering �HEIS� �Ref. 48�.
t�1�2� LEED �Ref. 49�.
u�1�2� x-ray diffraction �Ref. 50�.
vMixed basis-PP-LDA slab �Ref. 51�.
wPWPP-LDA slab �Ref. 52�.
xHex XRD �Ref. 53�.
yMixed basis-PP-LDA slab �Ref. 54�.
z�1�2� LEED �Ref. 55�.
aa�1�2� MEIS �Ref. 56�.
abLEED �Ref. 57�.
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surfaces for which data were available. However, the con-
verged value of surface energy for the Ti�0001� surface, cal-
culated within PBE-GGA appears to more closely match the
experimental data. Furthermore, regarding the �111� surfaces,
our pseudopotential calculations show excellent agreement
with the FLAPW calculations10 having only small differ-
ences all less than 0.03 eV/atom for the metals studied.

In the context of poorly represented surface energies, we
note the existence of exchange-correlation functionals that
are designed to address this class of problem. First, one in
which the surface and bulk of the material are treated with
region specific functionals with an interpolation region be-
tween them.66,67 As Armiento and Mattsson67 point out, the
functional they develop in their present paper �AM05� give
results similar to LDA and while they have not been used on
molecules, they represent a good choice for solid-state ma-
terials. Second, in removing the bias toward the description

of free-atom energies through a restoration of the second-
order gradient expansion for exchange over a wide range of
densities Perdew et al.68 create a functional built on PBE,
PBEsol. This same construction principle has more recently
been applied to the meta-GGA functional �Tao, Perdew,
Staroverov, and Scuseria �TPSS�� by Perdew et al.69 and also
shows promising results. The promise of these functionals
�AM05 and PBEsol� regarding bulk properties is further sup-
ported by a recent overview of the accuracy of new function-
als for bulk solids by Csonka et al.70 It is shown that both
functionals perform notably better for most metals. Further-
more, regarding bulk Pd, which in our study shows the larg-
est discrepancy with respect to experiment, they show an
agreement of the lattice constant within 0.003 or less for both
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FIG. 3. �Color online� Surface energies of unrelaxed �dashed
lines� and relaxed �solid lines� slabs of Pd�110�, Pd�100�, and
Pd�111� surfaces versus slab thickness.
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FIG. 2. �Color online� Surface energy versus slab thickness for
the Pd�100� surface calculated with the methods of Boettger �Ref.
8�, Fiorentini and Methfessel �Ref. 64�, and directly from Eq. �1�
with two different values for Ebulk.

TABLE III. Surface energies for 13-layer slabs in both unrelaxed and fully relaxed geometries reported
here in �eV/atom�. LDA and experimental values compared with the surface energy of the relaxed surfaces
reported here in units of �J /m2�.

Surface
�u

a

�eV/atom�
�r

a

�eV/atom�
�PBE

�J /m2�
�LDA

�J /m2�
�Expt.

�J /m2�

Al �111� 0.30 0.30 0.67a, 0.75c 0.91c 1.14b

�100� 0.45 0.44 0.86a

�110� 0.70 0.68 0.93a

Pd �111� 0.56 0.56 1.31a, 1.33c 1.87c 2.00b

�100� 0.74 0.74 1.49a

�110� 1.11 1.08 1.55a

Pt �111� 0.65 0.65 1.49a, 1.67c 2.23c 2.49b

�100� 0.91 0.90 1.81a

�110� 1.38 1.30 1.85a 2.48d

Au �111� 0.35 0.35 0.74a 1.04e 1.50b

�100� 0.46 0.46 0.85a 1.39f

�110� 0.71 0.69 0.90a 1.55d

Ti �0001� 0.97 0.92 1.96a, 1.99c 2.27c 1.99b

aPresent study.
bReference 6.
cFLAPW-LDA slab �Ref. 10�.
dPWPP-LDA slab �Ref. 65�.
eMixed basis-PP-LDA slab �Ref. 51�.
fPWPP-LDA slab �Ref. 52�.
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functionals.70 Ropo et al.71 compare the two functionals for
calculation of surface energies of metallic surfaces, including
the Pd�111� surface, where they show an agreement with the
experimental value of 2.00 J /m2 for both PBEsol
�2.08 J /m2� and AM05 �2.02 J /m2�. Further study of sur-
faces with these functionals are still needed, and the popu-
larity of the functionals PBE and LDA still dominates the
study of extended systems.

D. Work function

As mentioned earlier, the work function is the minimum
energy needed to remove an electron from the bulk of a
material through a surface to a point outside the material and
can be written as

� = Vvacuum − EF. �3�

Again we need to test the calculation of the work function
through use of the slab-supercell approximation. Thus, we
compare and discuss the calculation of work functions a pos-
teriori by two methods. First, we use directly Eq. �3�, where
both the potential in the vacuum region Vvacuum and the
Fermi energy EF are derived from the same calculation. Sec-
ond, we use a methodology utilizing macroscopic
averages.15,72 Here we take the macroscopic average of a
potential step across the surface of the slab, �V=Vvacuum
−Vslab interior, and reference it to the macroscopic average of a
potential obtained from a calculation on a separate bulk sys-
tem, Vbulk

Macro. This allows for the use of the Fermi energy from
the bulk system EF,bulk, which will not suffer from quantum
size effects,15

� = �V + Vbulk
Macro − EF,bulk. �4�

Note here that the window for macroscopic averaging is the
unrelaxed equilibrium layer spacing. All of the potentials dis-
cussed here �both from the slab and the bulk reference� refer
to the electrostatic part of the total potential �the Hartree
potential�. This part of the potential tails off more rapidly in
the vacuum region of the slab supercell when compared to
the full Kohn-Sham potential including the exchange-
correlation potential.

A comparison of these methods of calculation can be seen
in Fig. 4. Here the work function of Pd�100� slabs is plotted
versus slab thickness for both the unrelaxed slabs �dashed
lines� and relaxed slabs �solid lines�. It is clear from the

figure that both methods converge quickly for the unrelaxed
case �in as little as seven layers�. However, when taking
relaxation of all layers into account, the method of macro-
scopic averaging converges much more slowly. This is due to
the fact that the averaging window for the reference potential
and the layer spacing of the interior of the slab are not
equivalent. Work functions reported in the remainder of this
paper are taken directly by Eq. �3� without bulk references.

As a demonstration of the convergence of the work func-
tion as a function of slab thickness, the results for three Pd
surfaces are shown in Fig. 5. Here it can be seen that the
work function of the �111� and �100� surfaces converges
much more quickly than for the �110� surface. Even so, the
work function of the �110� surface is converged to within 0.1
eV by eight layers and �0.05 eV by 11 layers. As in the
previous section regarding the surface energy, oscillations
can be seen. Furthermore, it is know that the work function

TABLE IV. Work functions calculated for 13-layer slabs of all
metal faces considered in this study. The values in square braces are
for surfaces that are likely reconstructed. All values in eV.

Surface � �LDA �Expt.

Al �111� 4.02a, 4.04b 4.25c, 4.21b 4.23�0.02d

�100� 4.30a 4.38c 4.42�0.03d

�110� 4.09a 4.30c 4.12�0.02d

Pd �111� 5.25a, 5.22b 5.64b 5.90�0.01e, 5.55�0.01f

�100� 5.11a 5.65�0.01e

�110� 4.87a 5.20�0.01e

Pt �111� 5.69a, 5.69b 6.06b 6.08�0.15 g, 6.10�0.06h

�100� 5.66a �5.82�0.15g�
�110� 5.26a 5.52i �5.35�0.05j�

Au �111� 5.15a 5.63k 5.26�0.04l

�100� 5.10a 5.53k �5.22�0.04l�
�110� 5.04a 5.41k, 5.39i �5.20�0.04l�

Ti �0001� 4.38a, 4.40b 4.66b 4.33m

aPresent study.
bFLAPW-LDA slab �Ref. 10�.
cPWPP-LDA slab �Ref. 74�.
dReference 75.
eReference 76.
fReference 77.
gReference 78.

hReference 79.
iPWPP-LDA slab �Ref. 65�.
jReference 80.
kPWPP-LDA slab �Ref. 81�.
lReference 82.
mReference 83.
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FIG. 4. �Color online� A comparison of work-function calcula-
tions methods for work functions of Pd�100� slabs versus slab thick-
ness. The bulk reference used is a single unit cell of fcc Pd.
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FIG. 5. �Color online� Work function versus slab thickness for
the �111�, �100�, and �110� Pd surfaces, both unrelaxed �dashed
lines� and relaxed �solid lines�.

NICHOLAS E. SINGH-MILLER AND NICOLA MARZARI PHYSICAL REVIEW B 80, 235407 �2009�

235407-6



of different facets can differ greatly73 and the general trend is
that work function will decrease with decreasing layer pack-
ing, which is consistent with the findings in Fig. 5.

Our final results for the work function of all the metals
considered can be seen in Table IV; LDA and experimental
values from the literature are provided when available. With
the exception of Au and Ti, LDA again represents the better
choice of exchange-correlation functional if a better match to
experimental results is desired. We find it particular interest-
ing that Au and Pt should behave so differently with respect
to the functional used. Regarding Al, we see the same trend
as reported in Da Silva et al., where the work function of the
�111� and �110� surfaces are nearly equal and the �100� has
the larger of the three. Also, recall that the �100� and �110�
surfaces of Au and Pt are likely in a reconstructed state for
the experimental values. Finally, regarding the �111� sur-
faces, our psedopotential calculations again show excellent
agreement with the FLAPW calculations10 having only small
differences all less than 0.03 eV for the metals studied.

IV. SUMMARY

Calculations of the relaxations, surface energies, and work
functions of low-index metallic surfaces were made for the
�100�, �110�, and �111� surfaces of Al, Pd, Pt, and Au and the
�0001� surface of Ti using finite slab approximations. We
have paid particular attention to the issues that arise from
slab thickness and consequently finite-size effects, and we
have shown that convergence of these quantities can be
achieved for slab thicknesses that are greater than six layers
for �111�, �100�, and �0001� surfaces and ten layers for �110�
surfaces. We find that the use of bulk references for calcula-
tions of surface energies and work functions can be detri-
mental to convergence, especially when surface relaxations
are being considered.

We compared our results within the GGA with experi-
mental and LDA results from the literature. Our results and
comparison have shown that, even though converged values
can be achieved, calculated values do not match well quan-
titatively to experimental values. This may be understandable
for the surface relaxations and surface energies, where even
the experimental values have some room for interpretation.
While for the work functions, a property for which the ex-
perimental values are more reliable, we have found that nei-
ther LDA nor GGA is unanimously a better choice.
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APPENDIX: MAGNETIC BULK PALLADIUM

Recent calculations in the literature have shown that when
evaluated within the GGA Pd yields an erroneous magnetic
bulk ground state.31,32 In light of these observations we have
performed a similar evaluation of the ground state of Pd
using PBE-GGA and the pseudopotential mentioned in the
text of this paper. In a similar manner to Alexandre et al. we
find also a magnetic ground state for bulk Pd. We plot both
the total energy and the total magnetization as a function of
fcc lattice parameter for Pd evaluated with GGA in Fig. 6
and for comparison the same plot is generated for Pd within
LDA in Fig. 7.

Finally, we have calculated the surface properties of the
Pd�100� with spin polarization. In all cases the slab main-
tains a total magnetization, however, this has little effect on
the converged surface properties discussed in the body of
this paper. The changes in the relaxations and surfaces ener-
gies are negligible while the change in the work functions is
seen as an increase of 0.5%.
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FIG. 6. �Color online� Total energy per unit cell and total mag-
netization per unit cell plotted versus the fcc lattice constants of
bulk Pd using the GGA-PBE exchange-correlation functional with
spin polarization.
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bulk Pd using the LDA exchange-correlation functional with spin
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